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We report here the isolation of five new compounds,
dictazoles A and B (1 and 2) and dictazolines C—E
(5—7). Evidence is presented for the direct conversion of
the cyclobutyl analogue 1 to its cyclohexyl constitutional
isomer 5 via a vinyl cyclobutane rearrangement.

Marine sponges belonging to the family Thorectidae, and
genus Smenospongia in particular, are well-known sources of
indole alkaloids.! Consistent with these observations, we
recently reported the isolation of two compounds, dictazo-
lines A (3) and B (4),” from a Panamanian sponge identified
as S. cerebriformis (Duchassaing & Michelotti, 1864) (order
Dictyoceratida, family Thorectidae). Related alkaloids® are
proposed to be Diels—Alder adducts of aplysinopsin (8),*
but attempts to affect this transformation have been unsuc-
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cessful.*® Baran et al. have demonstrated the related alkaloid

ageliferin (11), originally proposed to be formed via a
Diels—Alder reaction of hymenidin,>® can be efficiently
synthesized via a vinyl cyclobutane rearrangement of scep-
trin (9) (Scheme 1A).” This elegant synthesis supports an
alternative unprecedented biosynthetic proposal for this
dimeric compound.’

We report here the isolation of dictazoles A (1) and B (2)
and dictazolines C—E (5—7) from the same extract which
provided 3 and 4. In addition, we present evidence for the
direct conversion of 1 to the constitutional isomer 5, pre-
sumably via a vinyl cyclobutane rearrangement (Scheme 1B).
In this case, the rearrangement of the cyclobutyl ring system
involves an indole rather than the imidazole ring found in 9.
These results suggest a more general role for this reaction in
the biosynthesis of marine alkaloids and represent only the
second example of a vinyl cyclobutane rearrangement fea-
turing an indole ring.®

LC—MS analyses of the dictazoline-containing extract
revealed the presence of several additional brominated me-
tabolites. Extensive chromatographic separations eventually
yielded 1, which lacked the expected AB spin system for H,-8
observed in the "H NMR spectra of 3 and 4. Analyses of the
DEPT and multiplicity-edited HSQC spectra confirmed this
position in 1 was modified, as the compound contained only
methine, methyl, and quaternary carbons.
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Dictazoline A (3) R'=Br R2=Br R®=Me R*=Me
DictazolineB (4) R'=Br R?=Br R®=H R*=H
DictazolineC (5) R'=Br RZ=H R3®=H R%=H
DictazolineD (6) R'=Br R?=H R®=H R*=Me
DictazolineE (7) R'=H R2=H R3®=H R*=Me

The structure of 1 was defined by analyses of the 2D
NMR spectroscopic data (DMSO-dgs and MeOH-d,). Two
indole rings substituted at C-3 were easily assembled based
on a suite of HMBC and COSY correlations (Table 1). A
spiro-2-iminoimidazolidin-4-one ring analogous to those
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SCHEME 1. Vinyl Cyclobutane Rearrangements of Sceptrin (9) and Dictazole A (1)
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TABLE 1. NMR Spectroscopic Data for 1 in DMSO-dg DMSO-dg MeOH-d, DMSO-dg MeOH-dy
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2 1246,CH 7.15,s H-8, H-15' HN—45 171 HN—L5 157 | Me” AN Me T
3 1065.C H-2, H-4, H-8 NH, NH HN{SHW NN
3a 126.4,C H-2, H-4, H-5, 1 13 1477 15
H-7, H-8 Dictazole Creatinine Analogues
4 119.5,CH 7.25,d(8.3) H-8, H-14'
5 1219,CH 7.07.d(8.3) FIGURE 1. Solvent-dependent tautomerization.
6 1142,C H-4, H-5, H-7
7 1143,CH 7.54,s . . .
7a  136.3.C H-2, H-4 tion of C-9 remains undetermined though as attempts
8 43.4,CH 4.46,s H-8 H-4, H-2, H-14 to crystallize our sample were unsuccessful due to decom-
9 672, C H-Sl, H-8, H-10 , pOSltlon
}? 170.9.C 8.16,s H-10 H-2 The '3C NMR spectrum of 1 was strongly dependent on
13 1884.C H-8. H-8". H-10 the NMR solvent. Specifically, in MeOH-d, the “amide” C-
2’ 123.6,CH 7.13,s H-8, H-10 13 and “guanidino” C-11 resonated as expected at 173.8 and
3’/ 105.9,C H-Z:, H-4:, H-S: 157.0 ppm, respectively, but in DMSO-ds these signals
3a° 1274,C H-2', H-4', H-5, shifted downfield significantly to 188.4 (C-13) and 170.9
H-7, H-§ m (C-11). A solvent-dependent tautomerization between
4 1177,CH 7.31,d(8.0) H-8, H-14/ ppm (&=11). p L rautom 1
S 119.,CH 6.95,1(8.0) 2-aminoimidazolone (1) and 2-iminoimidazolidinone (13,
6 121.6,CH 7.05,t(8.0) Figure 1) explained these observations, as in the former
7 HLT,CH 732,d(8.0) S tautomer (1) the lone pair on the “amide” nitrogen resided
7/a 1353,C H'Z,’ H-4', H-6 , , in a sp” orbital perpendicular to the s-system. These chemi-
8 43.6,CH 4.49,s H-8 H-2', H-14 : . . . .
9 727.C H-8, H-§', H-14' cal shift assignments were consistent with spectroscopic data
11 153.5,C H-14/, H-15 reported for the creatinine derivatives 14 and 15.°
13: 172.5,C H-8, H-8', H-15' R Several related analogues were also identified in the crude
14 258,CH; 3.21,s H-4, H-8', H-4, H-8 extract. In most cases, simple inspection of the "H NMR
15 25.1,CH; 2.73,s H-2

in 4 was deduced based on HMBC correlations from the
N-methyls to the adjacent quaternary carbons (H-15" to
C-11'/13' and H-14' to C-9’/11') and carbon chemical
shift comparisons with 4 in MeOH-d,. The two nonequiva-
lent methine signals (H-8/H-8") displayed HMBC correla-
tions to C-9, C-9’, C-13, C-13’ and to either C-8 or C-8'.
Together these data indicated 1 contained a cyclobutyl
rather than a cyclohexenyl core. Analyses of the ROESY
and 1D-DPFGSE NOE spectra established the configura-
tions of C-8, C-8', and C-9’ based on correlations between
H-8 and H-14' and between H-8' and H-8 (see Figures S13
and S14, Supporting Information). The relative configura-
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spectra in conjunction with HRMS data enabled the planar
structures to be proposed (see the Supporting Information
for tabulated NMR data). Briefly, compound 2 was bromo-
10-N-methyl 1, with a molecular formula of C57H»4Br,NgO».
The additional N-methyl group that was assigned as H-14,
based on HMBC correlations, facilitated the assignment of
the relative configuration of 2. In ID-DPFGSE NOE experi-
ments, correlations were observed between H-8 and H-14
and between H-8 and H-14' (see Figures S32 and S33,
Supporting Information). No correlation was present be-
tween H-8 and H-8' for 2, which contrast sharply with 1,

(9) Krawczyk, H.; Pietras, A.; Kraska, A. Spectrochim. Acta, Part A
2007, 66 A, 9—16 and references therein.
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suggesting different relative configurations of the two com-
pounds.'® Additional circumstantial evidence in support of
the epimeric nature of 1 and 2 was the notable chemical
shift difference observed for these methines in DMSO-dj
(A0 %cg —0.9; Ad' ey —2.5: A0 s —0.51; Ad' TPy
—0.63). As deduced by the ESI-MS data, compound 5 was a
constitutional isomer of 1. In contrast to 1 though, the 'H
NMR spectrum of 5 contained diagnostic signals for the
H,-8 AB system of the cyclohexenyl ring, which in conjunc-
tion with 2D NMR data, established the planar structure.
Compound 6 was 12-N-methyl-5, based on the extra methy-
lamide resonance in the '"H NMR spectrum, the HMBC
correlations to C-13 and C-11 from the new methyl reso-
nance, and HR-ESI MS data. Finally, 7 was desbromo-6 (see
the Supporting Information). The relative configurations at
C-8' and 9’ of 5—7 were established after analyses of their 2D
ROESY spectra, while the configuration of C-9 was deduced
by comparison with '>*C NMR data for 3 and 4.2

Dictazole A inhibited the aspartic protease BACEI
(memapsin 2). This protease is widely believed to have a
central role in the pathology of Alzheimer’s disease.!' As
such, pharmacological intervention that reduces BACEI
activity should be therapeutically beneficial. Dictazole A
inhibited BACEl-mediated cleavage of amyloid precursor
protein (APP) in a dose-dependent manner with an ICs,
value of 50 ug/mL. Interestingly, the 2-iminoimidazolidi-
none moiety within the dictazoles is common in several
BACEI! inhibitors and has led to the suggestion that this
privileged subunit is responsible for the observed activity
against BACE1."?

Compounds 1 and 2 are unusual. The closest related
alkaloids containing cyclobutane rings are sceptrin (9) and
orthidine E."® Baran et al. have proposed a biosynthesis of 11
involving a dicationic diradical vinyl cyclobutane rearrange-
ment (Scheme 1) of 9.'* Evidence for this hypothesis includes
computational data,'® and the direct microwave conversion
of 9 to 11.7 To date, no other potential examples of this
biosynthetic rearrangement have been demonstrated.

Given these results, the isomers 1 and 5 are intriguing. The
cyclobutyl alkaloid 1 could be a precursor to 5 via a related
reaction (Scheme 1). Rearrangement of 1 via the intermedi-
ate 12 would result in ring expansion to the cyclohexenyl
derivative 5 after double-bond isomerization. In this case,
the rearrangement would involve an indole rather than a
2-aminoimidazole ring, and the electron-deficient inter-
mediate 12 would be stabilized by the pendant 2-iminoimi-
dazolidinone moiety as compared to a 2-aminoimidazole.
Circumstantial evidence is the relative abundance of the two
isolated compounds. As is the case with 9 and 11, the
cyclobutyl derivative 1 is isolated in higher yields than the
cyclohexenyl analogue 5.

To examine the feasibility of this transformation, two
100 ug aliquots were prepared from the same sample of 1.

(10) C-9 epimers of compounds related to 3 have been previously reported
by Mangcini (see ref 3b).
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FIGURE 2. LC—MS extracted ion chromatograms (m1/z 559—560):
(A) standards 1 (major) and 5 (minor); (B) crude microwave
reaction in H,O of pure 1 after 1 min at 200 °C; (C) crude microwave
reaction in MeOH of pure 1 after I min at 150 °C. The peak at 1 min
is a result of deliberate overloading of the HPLC column to ensure 5
is not present in that reaction mixture.

One sample was dissolved in water, sealed, and heated in
a microwave at 200 °C for 1 min, similar to the conditions
reported for sceptrin.'® The other sample was heated to
150 °C in methanol. While no product was observed in
the methanol reaction mixture, remarkably, careful analy-
sis of the aqueous reaction mixture by LC—MS (Figure 2B)
revealed a new peak with the same retention time, m/z
ratio, and M + 2 isotope pattern as 5. HR-ESI mass spectr-
ometry provided pseudomolecular ion peaks at 559.1174
and 561.1144 in approximately a 1:1 ratio that corre-
sponded to the expected molecular formulas (errors of
5 and 7 ppm, respectively). The product was not observed
in the starting material (see the Supporting Information
Figure S54) or in the methanol control prepared from the
same sample of 1.'° It should be noted that an identical
solvent dependency was observed for the conversion of 9
to 11. While the conversion proceeded smoothly in water,
sceptrin decomposed when heated methanol.!” Due to the
limited amount of 1 isolated, the yield of this transforma-
tion has not been optimized, and the products have not
been characterized by NMR. The tentative identification
of 5 in the reaction mixture therefore rests on the standard
practice of comparing the retention time and the ionization
pattern of an unknown with a standard. It is possible
though that another isomer, for example, derived from a
single bond scission of the cyclobutane ring, may coelute
with 5. As such, final confirmation of this transformation

(16) The injection amount in parts a and ¢ of Figure 2 was approximately
10x the amount injected in Figure 2b.
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J. Am. Chem. Soc. 2007, 129, 4762-4775.
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will likely require the synthesis of 1 to provide sufficient
material to address these issues.

N\ N (E/2)-16 Ry = Br Ry= Me

HN Mg (EIZA17 Ry=H Ry=Me
0PN © (Ei218 Ry=BrRy=H

\

Me

These results deserve comment. First, the reaction mix-
ture containing the product 5 was composed mostly of
starting material and fragmentation products. Specifi-
cally, pseudomolecular ions consistent with (E)- and (Z)-
isomers of 16—18 were present.'® Baran et al. have noted
that the interconversion of 9 to 11 is strongly dependent on
the counterion, with the highest yields obtained with
formate or acetate salts.'” It is possible the low yield of
our reaction is attributable to a similar counterion depen-
dency with the formate salt being less than ideal for this
substrate.

These results suggest the possible involvement of a vinyl
cyclobutane rearrangement in the biosynthesis of 3—7, as
opposed to the Diels—Alder reaction suggested by Man-
cini et al. for the cycloaplysinopsins.'® Interestingly, dur-
ing the isolation of this latter class of compounds, a
constitutional isomer of cycloaplysinopsin A was identi-
fied by LC—MS that was attributed to a diastereomeric
Diels—Alder adduct. Our results raise the possibility that
this uncharacterized metabolite may instead be a cyclobu-
tyl isomer.

On the basis of NMR experiments with chiral shift
reagents in CDCls, the same group proposed that cycloaply-
sinopsin was a scalemic mixture. We attempted to duplicate
these experiments with 1. Unfortunately, 1 is not soluble in
CDCls, and attempts to titrate this compound with Eu(fod);
in CD3CN have been unsuccessful. This failure is due to the
hygroscopic nature of the solvent required and the trace
amounts of 1 remaining (200 ug).>

To the best of our knowledge, the conversion of 1 to 5 is
only the second example of a vinyl cyclobutane rearrange-
ment involving an indole ring and the first for a natural
product. Our data suggests this rearrangement may play a
larger role in the biosynthesis of alkaloids from marine
invertebrates than previously appreciated and suggests a
possible route toward the synthesis of this family of com-
pounds.

(18) 16: m/z 334.0200 (caled for Ci4H 3 BrN;O,™ 334.0191, 4+2.7 ppm),
m/z 336.0160 (caled for Ci4H;3¥'BrN;O," 336.0171, —3.2 ppm). 17: m/z
256.1086 (caled for C14H 14N50," 256.1086, 0.0 ppm), 1m1/z 278.0902 (caled for
C4H;3N30,Na™ 278.0902, —12 ppm). 18: m/z 320.0033 (caled for
C13H,,”BrN;0, ™ 320.0035, —0.5 ppm), 321.9998 (caled for C3H,,* ' BrN;O,™
322.0014, —5.0 ppm).

(19) The occurrence of these similar metabolites in two dissimilar sources
suggests that the true producer may be microbial.

(20) The method development required for chiral HPLC analysis of 1 has
not been undertaken.
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Experimental Section

Extraction and Isolation of BMNH 2000.12.11.6. The freeze-
dried sponge (114 g) was exhaustively extracted with 1:1
i-PrOH/CH,Cl; (3 x 3 L) to afford 14.85 g of lipophilic extract.
Partitioning using a modified Kupchan procedure yielded hex-
ane (6.07 g), DCM (1.88 g), n-BuOH (2.94 g), and H,O (5.78 g)
fractions. The residue from the 7-BuOH phase was separated on
a Sephadex LH-20 column eluting with MeOH, and the result-
ing fractions were pooled based on TLC analyses into seven
fractions. These fractions were subsequently separated by a
combination of Si flash chromatography and RP-HPLC to
yield 1, 2, and 5—7.

Dictazole A (1, 4.5mg, 3.0 x 1072 % yield): colorless powder;
[0]**p +8.5 (¢ 0.2, MeOH); UV (MeOH) Ay (log €) 223 (2.5)
284 (2.4) nm; IR (CaF>) Vmax 3337, 1643, 1592, 1352 cm™!; see
Table S1 (DMSO-d;) and Table S2 (MeOH-d,) for tabulated
spectral data; HRESI-TOFMS m/z 561.1206 [M + H]" (calcd
for Co6H,,3'BrNgO, ™, 561.1185, +3.7 ppm).

Dictazole B (2, 0.8 mg, 5.0 x 10~ % yield): colorless powder;
[0]**p —42.5 (¢ 0.2, MeOH); UV (MeOH) Apnax (log €) 228 (2.5)
288 (1.9) nm; IR (CaF») vmax 3392, 1653, 1591, 1352 cm™';
see Table S3 for tabulated spectral data; HRESI-TOFMS m/z
[M + H]" 651.0490 (caled for Cy;H,s BraNgO,t, 651.0467,
+3.5 ppm).

Dictazoline C (5, 1.5 mg, 1.0 x 1072 % yield): colorless
powder; [0]*’p —19.2 (¢ 0.2, MeOH); UV (MeOH) Apnax (Iog €)
225 (2.6) 289 (1.9) nm; IR (CaF>) ¥max 3542, 1646 cm™'; see
Table S4 for tabulated spectral data; HRESI-TOFMS m/z
559.1221 [M + H]' (caled for CogHoy ”BrNgO,*t, 559.1206,
+2.8 ppm).

Dictazoline D (6, 2.5 mg, 1.7 x 1072 % yield): colorless pow-
der; [0]**p —1.1 (¢ 0.1, MeOH); UV (MeOH) ...« (log €) 283
(9.14) nm; IR (CaF,) vmax 3422, 2930, 1656, 1586 cm ';
See Table S5 for tabulated spectral data; HRESI-TOFMS
m/z 573.1352 [M + H]" (caled for Co7Has BrNgO, ", 573.1362,
—1.7 ppm).

Dictazoline E (7,0.5mg, 3.4 x 102 % yield): colorless powder;
[0]%p —22.5 (¢ 0.2, MeOH); UV (MeOH) A,y (log &) 220 (4.6)
283 (3.8) nm; IR (CaF,) vmay 3542, 1646 cm™'; See Table S5 for
tabulated spectral data; HRESI-TOFMS /2 495.2279 [M + H]*
(caled for Co7H»NgO, ", 495.2257, +4.4 ppm).
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